Comparison of powertrain system configurations for electric passenger vehicles

ثبت نشده
چکیده

Electric vehicles (EV) are considered a practical alternative to conventional and hybrid electric passenger vehicles, with higher overall powertrain efficiencies by omitting the internal combustion engine. As a consequence of lower energy density in the battery energy storage as compared to fossil fuels powered vehicles, EVs have limited driving range, leading to a range phobia and limited consumer acceptance. Particularly for larger luxury EVs, electric motors with a single reduction gear typically do not achieve the diverse range of function needs that are present in multi-speed conventional vehicles, most notably acceleration performance and top speed requirements. Subsequently, multi-speed EV powertrains have been suggested for these applications. Through the utilization of multiple gear ratios a more diverse range of functional needs can be realized without increasing the practical size of the electric motor. The major limitation of multi-speed EV powertrains is that the increased transmission complexity introduces additional losses to the vehicle. Through a number of simulations this paper studies the integration of multispeed transmission with EV platforms. Particularly, it investigates the performance improvements of both B and E class vehicle platforms realized through utilization of two and three speed transmissions. Also the potential application of hybrid energy storage systems (i.e. batteries combined with supercapacitors) is studied. Results demonstrate that there can be significant benefits attained for both small and large passenger vehicles through the application of multi-speed transmissions. However, optimization of these ratios must be considered in the analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Active Suspension System in Parallel Hybrid Electric Vehicles

In previous studies, active suspension system in conventional powertrain systems was investigated. This paper presents the application of active suspension system in parallel hybrid electric vehicles as a novel idea. The main motivation for this study is investigation of the potential advantages of this application over the conventional one. For this purpose, a simultaneous simulation is develo...

متن کامل

Market Penetration of Alternative Powertrain Concepts in Heavy Commercial Vehicles: A System Dynamics Approach

Diffusion of alternative powertrain concepts in heavy commercial vehicles will start in the upcoming years after electrification and natural gas engines have already been introduced for passenger cars. Numerous quantitative forecasting and technology diffusion models exist for passenger cars but cannot be transferred unchanged to heavy commercial vehicles. A system dynamics model for the diffus...

متن کامل

Active Suspension System in Parallel Hybrid Electric Vehicles

In previous studies, active suspension system in conventional powertrain systems was investigated. This paper presents the application of active suspension system in parallel hybrid electric vehicles as a novel idea. The main motivation for this study is investigation of the potential advantages of this application over the conventional one. For this purpose, a simultaneous simulation is develo...

متن کامل

Changes of Japanese Consumer Preference for Electric Vehicles

Changes of Japanese consumer preference for electric vehicles (EVs) with new EV commercialisation and subsidy implementation has been quantitatively evaluated by applying conjoint analysis to the respondents choice experiment data collected by internet questionnaire survey that have been conducted in February 2009 and 2010. Powertrains (battery electric vehicle (BEV), gasoline hybrid electric v...

متن کامل

Development of an Instantaneous Powertrain Optimal Control Method for E-cvt Based Hybrid Electric Vehicles

Among HEV configurations, the electronic-continuously variable transmission (e-CVT) architecture can optimally blend power from an engine and electric motor/generators. Design of an e-CVT powertrain is a challenging and timeconsuming task due to the system complexity and the multidisciplinary nature of the design problem. In this work, an approach to develop the system-optimal based instantaneo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015